iae, Penicillium notatum, or Sporobolomyces salmoncoloc, when tested in a paper disk-agar diffusion assay. Compounds 12, 13, 19, 20, 26, 27, 37-39, 40, and 41 failed to significantly prolong the survival time of mice infected with lethal inocula of *Schistosoma mansoni* cereariae.²²

Experimental Section

Most of the compounds prepared in this work have been analyzed by pmr using a Varian A-60A or HR-100 spectrometer. Typical uv spectra are given in the representative preparations below.

5.5-Bis(4-chlorophenyl)pentadienoic Acid (14) - A mixture of 20 g (0.08 mole) of 4,4'-dichlorobenzophenone and 5.9 g (0.09 mole) of activated 40-mesh Zn in 100 ml of C₆H₆ and 60 ml of E(2O was refluxed under N_2 . A portion of a solution of 14.3 g (0.08 mole) of methyl 4-bromocrotonate in 35 ml of $C_6 H_6$ was added. and the reaction was initiated with the aid of a few drops of McMgBr solution. The remainder of the RBr solution was then added. Reflux was maintained for 3 hr. The cooled mixture was treated with 60 ml of 2 N HOAc and stirred to yield a clear organic phase. The organic layer was washed (H₂O, twice with 5% NaIICOa, and (wice with ILO) and then dried (NaSOd). The solvent was removed in vacao. The residue was heated on the steam bath for 35 min with 40 ml of 90% HCO₂H. The 11CO-H was removed in vacuo. The residue was taken up in 100 ml of boiling MeOII and treated with 4 g of KOH in a little McOII-H₂O. The solution was refluxed for 1.5 hr while H₂O was gradually added (total 40 ml) to the cloud point. After 16 hr, water was added until no more solid precipitated. Filtration and recrystallization of the residue gave \$.8 g of starting ketone. The filtrate was acidified with concentrated H₂SO₄, and the collected solid was recrystallized from MeOII-II₂O to yield 13.6 g (53%) of the product: uv (E(O11), 243 mµ (ϵ 15,700), 258 (15,700), 320.5 (28,000).

5,5-Bis(4-chlorophenyl)penta-2,4-dienoic Acid Diethylamide (10).—Acid 14 (3 g, 0.0094 mole) was dissolved in 20 ml of dry THF. Et₄N (0.01 mole) was added at room temperature and the solution was stirred for 20 min. The solution was cooled to 0° , treated dropwise with 0.0103 mole of CICO₂Me, and stirred 15

(22) This test was performed under the applices of the Walter Reed Army Institute of Research. We are grateful to Colonel William E. Rothe for providing this information. min more at 0°. Et₃NH (0.0405 mole) was added dropwise to the cold mixture, and the resulting solution was allowed to warne to 20° over 40 min. The resulting mixture was taken up in Et₂O-H₂O, and the Et₂O layer was washed (5% HCl, H₂O, twice with 5% NaHCO₃, and twice with H₂O). After drying (Na₂SO₄), the Et₂O was removed *in vacuo* and the solid residue was recrystallized from MeOH-H₂O to yield 2.12 g (60%) of product: nv (95% EtOH) 242 mµ (e 18,200), 255 (18,700), 325 (35,900). Starting acid (50%) was recovered from the base washes.

4,4'-Dimethoxybenzophenone was prepared in 90% yield either by the reaction of antisic acid with anisol and PPA²⁰ or by the McI-K₂CO₃ methylation of bis-4-hydroxybenzophenone.

Bis(4-anisyl)ethynylcarbinol was prepared by the reaction of 4,4'-dimethoxybenzophenone with lithium acetylide-ethylene diamine complex (Foote Mineral Co.) in DMF saturated with C_2H_2 . The product was obtained in 90% yield, mp 89-94.5° (lit.²⁴ mp 95°).

3,3-Bis(4-anisyl)acrolein.—Bis(4-anisyl)ethyrylearbinol (15 g, 0.056 mole) was dissolved in 75 ml of EtOH under N₂. An instantaneous red-purple color developed when the first drops of $20^{\circ}i_{-}$ H₂SO, were added. The solution was an opaque dark brown color after a total of 3 ml of acid had been added. The reaction mixture was diluted with 20 ml of EtOH and stirred for 2 hr at room temperature. A copions black oil had precipitated at this time. The reaction mixture was taken up in Et₂O-H₂O. The Et₂O layer was washed (H₂O, 5%, Na₂CO₃, H₂O). The Et₂O solution was dried and the Et₂O was removed *in vacuo* to yield the product as 15.4 g of a black oil: in spectrum, λ_{aext} 6.01 μ (C==O); the, silica gel (CHCl₃), B₄0.35.

Several additional experiments gave poor yields and/or less pure product when less acid was used or the reaction period was shortened or the reactant concentration was decreased.

5,5-Bis(4-anisyl)penta-2,4-dienoic Acid,—To a 500-ml flask containing 100 ml of dry C₆H₆ and 7.27 g (0.0257 mole) of carbomethoxymethylenetriphenylphosphorane was added 5.0 g (0.0187 mole) of 3,3-bis(4-anisyl)acrolein in 30 ml of C₆H₆. The mixture was refluxed for 16 hr and the C₆H₅ was removed *in vacuo*. The resulting solid was dissolved in 30 ml of MeOH and treated with a mixture of 1.8 g of KOH in 20 ml of H₂O. The nixture was refluxed for 2 hr and coded. A solid, neutral by-product was filtered off and the basic filtrate was acidified with 40°_{4} [H₂SO₄. The resulting solid was filtered off and recrystallized from MeOH to yield 1.41 g (25%) of the desired acid, mp 186–189°.

(23) P. Cadios, Abas. Chim. (Paris), 13, 214 (1956).

Synthesis and Pharmacology of Some α-Oxy- and α-Hydroxy-1-benzyltetrahydroisoquinolines

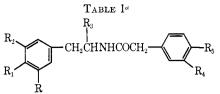
JERRY A. WEISBACH, JOEL L. KIRKPATRICK, EDWARD MACKO, AND BRYCE DOUGLAS

Smith Kline and French Laboratories, Philadelphia, Pennsylvania

Received February 21, 1968

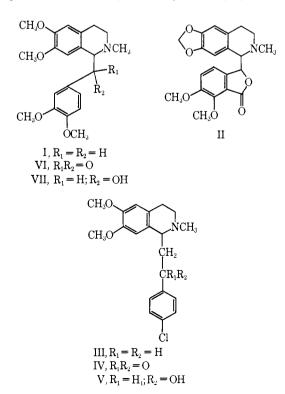
A series of α -oxy- and α -hydroxyl-1-benzyltetrahydroisoquinolines has been prepared and subjected to several pharmacological screening procedures. These include dose-range studies in mice and analgetic and antipyretic testing. A biological profile of these compounds derived from the results obtained is discussed.

The naturally occurring 1-benzyl and phthalideisoquinoline alkaloids exemplified by laudanosine (I) and narcotine (II) have often been the subject of chemical and pharmacological investigations.¹⁻³ More recently, synthetic 1-phenethyltetrahydroisoquinoline types such as III-V have undergone extensive chemical study⁴ because of their interesting analgetic properties.⁵ In spite of the intense and continuing activity in this area, both the α -oxo- (VI) and α -hydroxy-1-benzyl-tetrahydroisoquinoline (VII) alkaloid types have not yet been thoroughly examined chemically or, more important, been adequately screened pharmacologically. Occasionally the former have been isolated as by-products in synthetic sequences,^{6–8} there also are two


⁽¹⁾ A. Burger, Alkaloids, 4, 29 (1954).

⁽²⁾ J. Stanek, ibid., 7, 433 (1960), and references cited therein.

⁽³⁾ H. G. Boit, "Ergebnisse der Alkatoid-Chemie bis 1960," Akademie-Verlag, Berlin, 1961.


⁽⁴⁾ A. Brossi, H. Besendorf, L. A. Pirk, and A. Rheiner, Jr., in "Analgetics," G. deStevens, Ed., Academic Press Inc., New York, N. Y., 1965, p 281.

⁽⁵⁾ A. Brossi, H. Besendorf, B. Pellmont, M. Walter, and O. Schneider, *Hebr. Chim. Acta*, **43**, 1459 (1960).

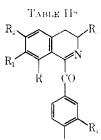
			101			14		
				Ŕ				
No.	R	\mathbf{R}_1	\mathbf{R}_2	R3	\mathbf{R}_4	$\mathbf{R}_{\mathfrak{b}}$	Mp, °C	Formula
1	н	OCI	H_2O	CH_3	Н	Н	100 - 102	$C_{18}H_{19}NO_3$
2	Н	OCI	H_2O	CH_3	Н	Cl	114 - 115	C ₁₈ H ₁₈ ClNO ₃
3	Н	OCI	H_2O	CH_3	Н	OCH3	110 - 112	$C_{19}H_{21}NO_4$
4	Н	OCI	H_2O	CH_3	OCH_3	н	114 - 115	$C_{19}H_{21}NO_4$
$\mathbf{\tilde{o}}$	Н	OCI	H_2O	CH_3	OCH₃	OCH3	124 - 125	$C_{20}H_{23}NO_{3}$
6	Н	OCI	H_2O	н	Н	\mathbf{H}	96–97.ō	$C_{17}H_{17}NO_3$
7	Η	OCI	H_2O	н	Н	Ci	139 - 141	C_1 ; $H_{16}ClNO_3$
8	Н	OCI	H_2O	н	Η	OCH_3	91 - 92	$C_{18}H_{19}NO_4$
9	Н	OCI	H_2O	Η	OCH_3	Н	b	
10	Н	OCI	H_2O	\mathbf{H}	OCH3	OCH_3	133 - 136	$C_{19}H_2 NO_5$
11	Н	OCH_3	OCH_3	CH_3	Η	Η	119 - 120	$C_{19}H_{23}NO_3$
12	Η	OCH_3	OCH_3	CH_3	Η	Ci	144 - 145	$C_{19}H_{22}ClNO_3$
13	Η	OCH_3	OCH_3	CH_3	Η	OCH_3	118 - 120	$\mathrm{C}_{20}\mathrm{H}_{25}\mathrm{NO}_4$
14	Η	OCH_3	OCH_3	CH_3	OCH3	Η	115 - 116	$C_{29}H_{25}NO_4$
15	\mathbf{H}	OCH_3	OCH_3	CH_3	OCH_3	OCH_3	123 - 125	$\mathrm{C}_{21}\mathrm{H}_{27}\mathrm{NO}_5$
16	Η	Н	OCH_3	Н	Η	Н	b	
17	Η	Η	OCH_3	Η	\mathbf{H}	Cl	b	
18	Η	Н	OCH_3	Н	\mathbf{H}	$OCII_3$	b	
19	Н	Η	OCH_3	н	OCH_3	\mathbf{H}	b	
20	Η	н	OCH_3	Н	OCH_3	OCH_3	b	
21	Η	OCH_3	OCH_3	Η	Η	H	107 - 108	$C_{18}H_{21}NO_3$
22	H	OCH_3	OCH_3	Η	\mathbf{H}	Cl	124 - 126	$\mathrm{C_{18}H_{20}ClNO_{3}}$
23	\mathbf{H}	OCH_3	OCH_3	Η	\mathbf{H}	OCH3	126 - 127	$\mathrm{C}_{19}\mathrm{H}_{23}\mathrm{NO}_4$
24	Η	OCH_3	OCH_3	Н	OCH_3	OCH3	120 - 122	$\mathrm{C}_{20}\mathrm{H}_{25}\mathrm{NO}_{5}$
25	OCH_3	OCH_3	OCH_3	CH_3	Н	Cl	148 - 149	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{ClNO}_{4}$
26	OCH_3	OCH_3	OCH_3	CH_3	H	OCH_3	118 - 120	$\mathrm{C}_{21}\mathrm{H}_{27}\mathrm{NO}_5$
27	OCH_3	OCH_3	OCH_3	CH_3	OCH_3	OCH_3	125 - 126	$\mathrm{C}_{22}\mathrm{H}_{29}\mathrm{NO}_6$
28	\mathbf{H}	н	OCH_3	CH_3	Н	Н	b	
29	\mathbf{H}	\mathbf{H}	OCH_3	CH_3	Н	Ci	101 - 104	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{ClNO}_2$
30	Η	Н	OCH_3	CH_3	H	OCH_3	b	
31	Η	Н	OCH	CH_3	OCH_3	Η	b	
32	Η	н	OCH_3	CH_3	OCH_3	OCH3	b	
a 77 11			1000	h \$7!				

^a Typically, yields were in the range of 80-100%. ^b Viscous oil which was characterized by means of ir spectroscopy. ^c All compounds except the oils (footnote b) were analyzed for C, H, N.

published descriptions of syntheses specifically directed toward oxolaudanosine (VI) itself.^{9,10} We now describe a chemical and pharmacological investigation of a number of compounds of the general types VI and VII (Tables I-VI).

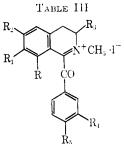
A variety of substituted phenethylamines and phenylacetyl acid chlorides, exemplified by VIII and IX, respectively, were converted to the corresponding amides X by the usual techniques¹¹ (Scheme I). These were cyclized to the isoquinoline moiety via the Bischler-Napieralski reaction employing POCl₃ in refluxing toluene as dehydrating agent. Separation and removal of excess reagent was effected by dilution of the cooled reaction mixture with large volumes of petroleum ether, whereupon a dihydroisoquinolium salt usually separated in a semicrystalline state. The latter was not characterized but rather directly converted to the 1-benzyl-3,4-dihydroisoquinoline (XI). Often, particularly with chloro-substituted variants of XI, these

(6) H. Yamaguehi, J. Pharm. Soc. Japan, 78, 733 (1958).


(7) M. Tomita and J. Njimi, *ibid.*, 78, 1229 (1958).

(8) T. Kametani and K. Fukumoto, *ibid.*, **83**, 1031 (1963).

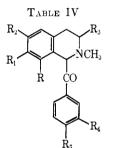
(9) E. Schlittler and A. Lindenmann, Helv. Chim. Acta, 32, 1880 (1949).


(10) K. W. Bentley and A. W. Murray, J. Chem. Soc., 2487 (1963).

(11) R. L. Shriner, R. C. Fuson, and D. Y. Curtin "The Systematic Identification of Organic Compounds," John Wiley and Sons, Inc., New York, N. Y., 1956, p 200.

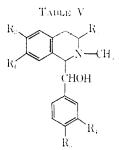
						Ŕa		
No.	R	\mathbf{R}_1	\mathbb{R}_2	Ra	\mathbf{R}_4	Ra	M_{12} , °C	Cormpla
33	11	00	11 <u>4</u> O	CH_{a}	II	11	90~91	$C_{1s}\Pi_{15}NO_{a}$
34	11	OC	H_2O	CH_{4}	II.	Cl	124 - 127	C ₁₈ H ₁₄ ClNO ₃
35	H	OC	H₂O	CH_{4}	H	OCH_3	122 - 124	$C_{19}H_{17}NO_4$
36	H	OC	H_2O	CH_1	OCH_3	H	99-101	$C_{19}H_{17}NO_4$
37	Н	OC	H_2O	$\rm CH_3$	OCH_3	OCH_{a}	147-149	$C_{20}\Pi_{18}NO_8$
38	H	OC	H_2O	H	П	11	166-169 dec ^s	$C_{17}H_{14}ClNO_4$
39	II	OC	H_2O	H	H	CI	132-133	$C_{17}H_{12}ClNO_3$
40	H	OC	H_2O	11	Н	OCH_{4}	141-142	$C_{18}H_{15}NO_4$
41	H	OC	H_2O	11	OCH_{4}	11	$184 - 187 \text{ dec}^b$	$C_{18}H_{16}ClNO_4$
42	П	OC	H ₂ O	H	OCH_3	OCH_{4}	153 - 154	$C_{13}H_{15}NO_5$
43	H	OCH_3	OCH_4	CH_3	H	Н	117-118	$C_{12}H_{13}NO_{3}$
44	H	OCH_3	OCH_3	CH_3	Н	CI	136-138	$C_{19}H_{18}CINO_3$
45	H	OCH₃	OCH_4	CH_{a}	11	OCH_3	108-109	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{NO}_4$
46	11	OCH_3	OCH_{3}	CH_3	OCH_3	11	126 - 128	$C_{20}H_{21}NO_4$
47	11	OCH₃	OCH_{a}	CH_{4}	OCH_4	OCH_3	119-122	$C_{21}H_{23}NO_5$
48	11	H	OCH_3	Н	H	H	98-100	$C_{17}H_{15}NO_2$
49	11	Η	OCH_3	Н	11	CI	$192 - 195^{\circ}$	$C_{17}H_{15}Cl_2NO_2$
50	11	H	OCH_3	ΙÏ	11	OCH_3	155-157	C ₆₈ H ₁₇ NO _a
51	11	H	OCH_{a}	11	OCH_{a}	11	$1.57 - 160^{5}$	C ₁₈ H ₁₈ CINO ₃
52	Н	11	OCH_4	14	OCH_{a}	OCH_3	101-103	$C_{19}H_{19}NO_4$
53	H	OCH_3	OCH_{a}	II	11	11	$190-192^{k}$	$C_{18}H_{18}CINO_{3} \cdot 0.5H_{2}O$
54	11	OCH_3	OCH_{a}	П	11	Cl	130-131	$C_{18}H_{16}CINO_3$
<u>55</u>	Η	OCH3	OCH_3	H	H	OCH_3	105-107	$C_{13}H_{13}NO_4$
56	H	OCH_3	OCH_3	H	OCH_{*}	OCH_3	192-193	$C_{20}H_{21}NO_5$
57	$OCII_3$	OCH	OCH_3	CH₃	H	Cl	126 - 127	$C_{20}H_{20}ClNO_4$
-58	OCH_3	OCH₃	OCH_3	CII_3	T1	OCH_3	96 - 98	$\mathrm{C}_{21}\mathrm{H}_{23}\mathrm{NO}_5$
59	OCH_3	OCH ₃	OCH_3	CH_{a}	OCH_3	OCH_3	$148-151 \operatorname{dec}^b$	$C_{aa}H_{ab}CINO_6$
60	II	H	OCH_3	CH_3	II	11	107-109	$C_{18}H_{17}NO_2$
61	<u>]-</u>]	П	OCH_4	CH_{a}	11	CI	$228-231 dec^3$	$C_{18}H_{17}Cl_2NO_2$
62	11	ΙI	OCIL	CH_{a}	11	OCH_{4}	$180-181 dec^{b}$	$C_{10}H_{20}CINO_3 \cdot 0.5CH_3OH$
63	II	11	OCH_{a}	CH_{3}	OCHa	11	$185 - 186 \mathrm{dec^{b}}$	$C_{19}H_{20}CINO_3$
64	H	11	OCH_1	СHа	OCH_a	OCH_{a}	126-128	$C_{20}H_{20}NO_4$

* Exact yields were not always computed due to mechanical losses with tarry materials during air oxidation, but were usually in the 25-40% range over-all from amide. ^b Hydrochloride. ^c All compounds were analyzed for C, H, N.



					1.3			
N.,	ĸ					Yield,	1. m	Formula ^b
No.	IC.	$R_1 = R_2$	$\mathbf{R}_{\mathbf{a}}$	R_4	Rs	R.	Mp , " $^{\circ}C$	r or biula.
65	11	OCH_2O	CH_{a}	11	11	81	233–237 dee	$\mathrm{C}_{19}\mathrm{H}_{18}\mathrm{INO}_3$
66	H	OCH_2O	CH_3	н	Cl	92	227 - 228	$C_{19}H_{17}ClINO_3$
67	Н	OCH_2O	CH_3	Η	OCH_3	94	248-250	$\mathrm{C}_{20}\mathrm{H}_{20}\mathrm{INO}_4$
68	ŀi	OCH_2O	CH_3	OCH_3	П	98	204 - 207	$C_{20}H_{20}INO_4$
69	H	OCH_2O	$\mathrm{C}\mathbf{H}_{a}$	OCH_3	OCH_{4}	97	205 - 208	$\mathrm{C}_{21}\mathrm{H}_{22}\mathrm{INO}_5$
70	Н	OCH ₂ O	Н	H	Н	70	229 - 230	$C_{18}H_{16}INO_3$
71	Н	OCH_2O	11	H	CI	$\overline{76}$	241 - 242	$C_{18}H_{15}CHNO_{31}$
72	H	OCH_2O	H	lI	OCH_{4}	97	242 - 243	$C_{19}H_{18}INO_4$
73	Н	OCH ₂ O	11	OCH_4	Н	68	220-222	$C_{19}H_{18}INO_4$
74	11	OCH_2O	11	OCH_3	OCH_{a}	7.5	230-232	$C_{20}H_{20}INO_5$
7.5	II	$\mathrm{OCH}_3 = \mathrm{OCH}_3$	CH_3	11	H	75	191 - 192	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{INO}_{3}$

TABLE	\mathbf{III}	(Continued)
-------	----------------	-------------


						Yield,		
R	\mathbf{R}_1	\mathbf{R}_2	R_3	R_4	R_{δ}	%	$Mp^a \circ C$	Formula ^b
Н	OCH_3	OCH_3	CH_3	н	Cl	68	175 - 176	$\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{ClINO}_3$
Н	OCH_3	OCH_3	CH_3	Н	OCH_3	88	179 - 180	$C_{21}H_{24}INO_4$
н	OCH_3	OCH3	CH_3	OCH_3	\mathbf{H}	62	177 - 179	$C_{21}H_{24}INO_4$
н	OCH_3	OCH_3	CH_3	OCH_3	OCH_3	76	202 - 204	$C_{22}H_{26}INO_5$
н	н	OCH	Η	\mathbf{H}	\mathbf{H}	87	198 - 200	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{INO}_2$
Н	н	OCH_3	Η	\mathbf{H}	Cl	62	205 - 207	$C_{18}H_{17}CIINO_2$
Н	н	OCH_3	\mathbf{H}	\mathbf{H}	OCH_3	75	193 - 195	$C_{19}H_{20}INO_3$
Н	н	OCH_3	Н	OCH_3	\mathbf{H}	51	192 - 193	$C_{19}H_{20}INO_3$
Н	н	OCH_3	Н	OCH_3	OCH_3	74	201 - 202	$C_{20}H_{22}INO_4$
Н	OCH_3	OCH_3	Н	\mathbf{H}	Η	44	185 - 186	$C_{19}H_{20}INO_3$
H	OCH_3	OCH_3	Η	\mathbf{H}	Cl	89	172 - 173	$C_{19}H_{19}ClINO_3 \cdot 0.5CH_3OH$
\mathbf{H}	OCH_3	OCH_3	Η	Н	OCH_3	75	157 - 160	$C_{20}H_{22}INO_4 \cdot CH_3OH$
\mathbf{H}	OCH_3	OCH_3	Η	OCH_3	OCH_3	65	184 - 185	$C_{21}H_{24}INO_5$
OCH_3	OCH_3	OCH_3	CH_3	Н	Cl	72	148 - 150	$C_{21}H_{23}CIINO_4$
OCH_3	OCH_3	OCH_3	CH_3	\mathbf{H}	OCH_3	67	134 - 135	$C_{22}H_{26}INO_5 \cdot 0.5CH_3OH$
OCH_3	OCH_3	OCH_3	CH_3	OCH_3	OCH_3	57	162 - 164	$C_{23}H_{28}INO_6$
н	\mathbf{H}	OCH_3	CH_3	\mathbf{H}	Н	87	191 - 193	$C_{19}H_{20}INO_2$
\mathbf{H}	н	OCH_3	CH_3	Н	Cl	81	197 - 198	$C_{19}H_{19}ClINO_2$
Η	н	OCH_3	CH_3	\mathbf{H}	OCH_3	31	197 - 198	$C_{20}H_2$, INO ₃
Η	\mathbf{H}	OCH_3	CH	OCH_3	Н	47	169 - 171	$C_{20}H_{22}INO_3$
н	Н	OCH_3	CH_3	OCH_3	OCH_3	98	204 - 205	$C_{21}H_{24}INO_4$
	Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	$\begin{array}{cccc} H & OCH_3 \\ H & OCH_3 \\ H & OCH_3 \\ H & OCH_3 \\ H & H \\ H & OCH_3 \\ H & OCH_3 \\ H & OCH_3 \\ H & OCH_3 \\ OCH_3 & OCH_3 \\ OCH_3 & OCH_3 \\ OCH_3 & OCH_3 \\ OCH_3 & OCH_3 \\ H & H \\ H & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R R_1 R_2 R_3 R_4 R_b $\%$ H OCH ₃ OCH ₃ CH ₃ H Cl 68 H OCH ₃ OCH ₃ CH ₃ H OCH ₃ 88 H OCH ₃ OCH ₃ CH ₃ OCH ₃ H 62 H OCH ₃ OCH ₃ OCH ₃ OCH ₃ 76 H OCH ₃ OCH ₃ CH ₃ OCH ₃ 76 H H OCH ₃ CH ₃ OCH ₃ 76 H H OCH ₃ H H 87 H H OCH ₃ H H 87 H H OCH ₃ H H 61 H H OCH ₃ H 51 75 H H OCH ₃ H H 44 H OCH ₃ OCH ₃ H H 65 OCH ₃ OCH ₃	R R_1 R_2 R_3 R_4 R_5 $\%$ $Mp.^{a \circ C}$ HOCH ₃ OCH ₃ CH ₃ HCl68175-176HOCH ₃ OCH ₃ CH ₃ HOCH ₃ 88179-180HOCH ₃ OCH ₃ CH ₃ OCH ₃ H62177-179HOCH ₃ OCH ₃ CH ₃ OCH ₃ OCH ₃ 76202-204HHOCH ₃ OCH ₄ HH87198-200HHOCH ₃ HHCl62205-207HHOCH ₃ HHOCH ₃ 75193-195HHOCH ₃ HHOCH ₃ 74201-202HOCH ₃ OCH ₃ HOCH ₃ 74201-202HOCH ₃ OCH ₃ HHH44185-186HOCH ₃ OCH ₃ HHH44185-186HOCH ₃ OCH ₃ HHCl89172-173HOCH ₃ OCH ₃ HHOCH ₃ 57157-160HOCH ₃ OCH ₃ OCH ₃ HH14185-186HOCH ₃ OCH ₃ HHH141-185OCH ₃ OCH ₃ OCH ₃ HH144185-186HOCH ₃ OCH ₃ OCH ₃ OCH ₃ 114-135OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ 57162-1

 a In all instances the specimens decomposed rather than melted. b See footnote c, Table II.

					п	5			
N T .	Ð	ъ	-	-	_	_	Yield,		
No.	R	R ₁	R_2	R_3	R_4	Rs	%	Mp, °C	Formula ^c
9 7	Н	OCI		CH_3	Η	Н	45	141 - 143	$C_{19}H_{19}NO_3$
98	H	OCI		CH_3	Н	Cl	32	135 - 137	$C_{19}H_{18}CINO_3$
99	Н	OCI	-	CH_3	Η	OCH_3	25	131-132	$\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{NO}_4$
100	Н	OCI		CH_3	OCH_3	Н	23	$209-210^{a,b}$	$\mathrm{C}_{21}\mathrm{H}_{26}\mathrm{ClNO}_{5}$
101	Н	OC		CH_3	OCH_3	OCH_3	32	$236-239 \operatorname{dec}^a$	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{ClNO}_{5}$
102	Н	OCI		Н	\mathbf{H}	Н	32	121 - 122	$C_{18}H_1$, NO_3
103	Н	OCI	H_2O	н	\mathbf{H}	Cl	43	115 - 117	$\mathrm{C}_{18}\mathrm{H}_{16}\mathrm{ClNO}_{3}$
104	н	OCI	$H_{2}O$	\mathbf{H}	н	OCH_3	49	137 - 138	$C_{19}H_{19}NO_4$
105	н	OCI	H_2O	Н	OCH_3	н	28	106 - 108	$C_{19}H_{19}NO_4$
106	н	OCI	H_2O	н	OCH_3	OCH_3	45	$245-246 \mathrm{dec}^a$	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{ClNO}_5$
107	\mathbf{H}	OCH₃	OCH_3	CH_3	\mathbf{H}	Н	39	105 - 107	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{NO}_3$
108	н	OCH_3	OCH₃	CH_3	Η	Cl	31	$197-200 \operatorname{dec}^a$	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{Cl}_2\mathrm{NO}_3$
109	Н	OCH_3	OCH_3	CH_3	н	OCH_3	35	113 - 115	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{NO}_4$
110	Η	OCH_3	OCH_3	CH_3	OCH_3	Н	41	100 - 102	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{NO}_4$
111	Η	OCH_3	OCH_3	CH_3	OCH_3	OCH_3	34	$195 - 198^{a}$	$C_{22}H_{28}ClNO_5$
112	Н	H	OCH_3	Н	Н	Н	26	108 - 109	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{NO}_{2}$
113	Н	Η	OCH_3	\mathbf{H}	Н	Cl	41	113 - 114	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{ClNO}_2$
114	\mathbf{H}	Η	OCH_3	Η	H	OCH_3	24	104 - 106	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{NO}_3$
115	H	Η	OCH_3	Η	OCH_3	Н	24	$167-169 \mathrm{dec}^a$	$C_{19}H_{22}ClNO_3$
116	II	Η	OCH_3	Η	OCH_3	OCH_3	12	$190-193 dec^a$	$C_{20}H_{24}ClNO_4$
117	н	OCH_3	OCH_3	Н	н	н	23	104 - 106	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{NO}_3$
118	н	OCH_3	OCH_3	\mathbf{H}	Н	Cl	23	113 - 115	$C_{19}H_{20}ClNO_3$
119	н	OCH_3	OCH_3	н	Н	OCH_3	26	$183 - 185^{a}$	$C_{20}H_{24}ClNO_4$
120	\mathbf{H}	OCH_3	OCH_3	н	OCH_3	OCH_3	29	$195-196 \mathrm{dec}^a$	$\mathrm{C}_{21}\mathrm{H}_{26}\mathrm{ClNO}_5$
121	OCH_3	OCH_3	OCH_3	CH_3	Н	Cl	10	223–225 dec^a	$\mathrm{C_{2l}H_{25}Cl_2NO_4}$
122	OCH_3	OCH_3	OCH_3	CH_3	Η	OCH_3	19	$193-194 \operatorname{dec}^a$	$\mathrm{C}_{22}\mathrm{H}_{28}\mathrm{ClNO}_5$
123	OCH_3	OCH₃	OCH_3	CH_3	OCH_3	OCH_3	33	$208-209 \ \mathrm{dec}^a$	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{ClNO}_{6}$
124	\mathbf{H}	Н	OCH_3	CH_3	Н	Н	38	$181-183 \ \mathrm{dec}^a$	$\mathrm{C}_{19}\mathrm{H}_{22}\mathrm{ClNO}_2$
125	\mathbf{H}	\mathbf{H}	OCH_3	CH_3	Н	Cl	21	$186-188 \ \mathrm{dec}^a$	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{Cl}_2\mathrm{NO}_2$
126	н	н	OCH_3	CH_3	н	OCH_3	43	87-89	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{NO}_3$
127	\mathbf{H}	Н	OCH_3	CH_3	OCH_3	н	17	$169 - 171^{a}$	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{ClNO}_3$
128	\mathbf{H}	Н	OCH_3	CH_3	OCH_3	OCH_3	50	$198-200 \operatorname{dec}^a$	$\mathrm{C}_{21}\mathrm{H}_{26}\mathrm{ClNO}_4$
Hydrochle	oride. ^b Me	ethanolate	. ^o See Tai	ble II. footr	note c				

^a Hydrochloride. ^b Methanolate. ^c See Table II, footnote c.

						Yield,		
No.	Re	\mathbf{R}_{2}	R.	R_1	R.,	S.,	$M_{1^{\mu}}$, $^{\circ}C$	Cormuta ⁶
129	OC.	<u>H</u> u()	H	H	Н	.51	$248-251 \ \text{dec}^{a}$	$C_{18}\Pi_{20}CINO_3$
130	OC	H_2O	П	H	Cl	70	$218-221 dec^a$	$C_{18}H_{19}Cl_2NO_3$
131	OC.	ŀl ₂ O	11	П	OCH3	43	$209-211 dec^u$	C ₍₉ H ₂₂ ClNO ₄
132	OC	$\Pi_2()$	CH_3	П	П	79	274– 275 dec ^a	$C_{13}H_{22}CINO_3$
133	OC	H ₂ O	CH_3	H	Cl	89	$231-234 \ \mathrm{dec}^a$	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{Cl}_2\mathrm{NO}_3$
134	OC	$H_2(\cdot)$	CH_{a}	11	OCH_3	84	229 – $231~{ m dec}^a$	$C_{20}H_{24}CINO_4$
135	OC	$\Pi_2 O$	CH_{a}	OCH_3	OCH_3	38	243245 dec ^a	$C_{21}H_{26}CINO_5$
136	OCH_{a}	OCH_{4}	CH_{a}	п	Ci	79	$215-217 dee^a$	$C_{20}H_{25}Cl_2NO_3$
137	OCH_{a}	OCHa	CH_3	II	OCH_3	94	193–195 dee″	$C_{21}H_{28}CINO_4$
138	OCH_{a}	OCH_3	$C11_3$	OCH_3	II.	61	204 – $206 \mathrm{dec}^a$	$C_{21}H_{28}CINO_4$
139	11	OCH_3	H	Н	11	56	122 - 125"	$C_{18}H_{22}CINO_{2}^{\circ}$
140	11	OCH_3	CH_3	П	Cl	58	$270273~\mathrm{dec}^a$	$\mathrm{C}_{09}\mathrm{H}_{23}\mathrm{Cl}_2\mathrm{NO}_2$
141	11	OCH_{*}	CH_{3}	OCH_3	OCH_a	41	209–211 dec"	$C_{21}H_{28}ClNO_4$
142	11	OCH_{a}	CH_{a}	OCHa	Ħ	70	$190-193^{a}$	$C_{20}H_{26}CINO_3$
143	OCH_{4}	OCH_3	11	Н	H	80	$215 - 217^{n}$	C ₁₃ H ₂₄ ClNO ₃
144	OCH _a	OCHa	11	11	CI	89	197199*	$C_{19}H_{23}Cl_2NO_3$
145	OCH_3	OCH_3	11	11	OCH_a	90	115-116	$\mathrm{C}_{20}\mathrm{H}_{25}\mathrm{NO}_4$
146	OCH_3	OCH_3	П	OCH_3	OCH_3	60	108-110	$C_{21}H_{27}NO_5$

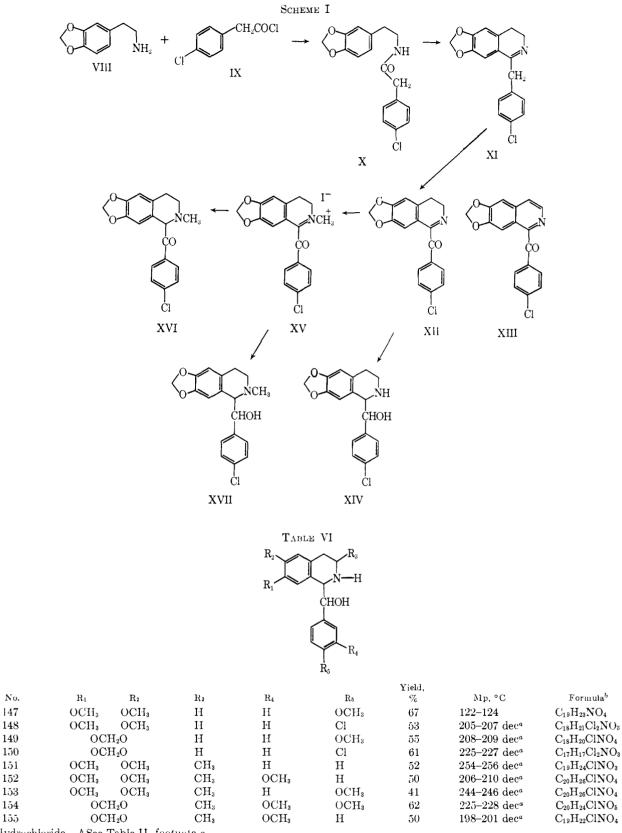
" Hydrochloride. "See Table II, footnote c. "C: caled, 67.60; found, 67.16.

compounds were crystalline as the free base. Usually the compounds were viscous oils. In all instances the total crude reaction product XI was used for oxidation to XII, and thus the reported yields of this compound represent over-all figures for $X \rightarrow XII$. Initially oxidation was effected by reaction of XI with Na₂Cr₂- O_7 -HOAc-H₂SO₄ in a vigorously exothermic reaction. The product, first obtained as a black tar, was easily purified by column chromatography, even on a large scale. However, examination of the crystalline material using nmr spectroscopy indicated that it was often a mixture of the dihydro (XII) and fully aromatized 1-benzoylisoquinolines (XIII) and occasionally consisted primarily of the latter product. As attempts to regulate this vigorous exothermic reaction were to no avail, the slow, but mild and specific, air oxidation conditions of Perkin, et al.,¹² were applied to XI. Thus, the crude Bischler-Napieralski base was dissolved in excess methanol and stirred in an open tray for periods varying from 1 to 3 weeks. Upon stabilization of the intensity of carbonyl absorption in an ir spectrum of the concentrated reaction mixture, the basic product was isolated in the usual manner and purified by column chromatography and subsequent crystallization. XII was directly reduced to the corresponding $1-\alpha$ -hydroxybenzyl-1,2,3,4-tetrahydroisoquinoline derivative XIV (stereochemistry unknown) with NaBH₄-MeOH.

Treatment of XII with methyl iodide yielded the quaternary salt XV, which was selectively reduced to the 1-benzoyl-N-methyl-1,2,3,4-tetrahydroisoquinoline XVI with Raney nickel and hydrogen at ca, atmospheric pressure or alternately to the 1-a-hydroxylbenzyl dcrivative XVII with NaBH₄-MeOH.

Pharmacology.—The series of α -oxo- and α -hydroxy-1-benzyltetrahydroisoquinolines was subjected to several pharmacological screening procedures. Most of these compounds were tested for dose-range studies in the mouse, elevation of pain threshold to pressure, and for antipyretic activity in the rat.

Doses of 300 mg/kg po were initially administered to mice which were then observed for gross behavioral changes, pupillary alterations, reaction to thermal pain, lowering of rectal temperature, muscle tonus, and toxicity (Table VII). Presumptive evidence for antiinflammatory activity was measured by three parameters: pain, skin temperature, and edema. The effect of the compounds on pain threshold was measured by the pressure method of Randall and Selitto¹³ (Table VIII) and also by the thermal method of D'Amour and Smith.¹⁴ Skin temperature was measured with a "Banjo" surface probe and telethermometer, while reduction of edema was measured by a modification of the method of Winter, et al.¹⁵


Cardiovascular studies were carried out in the chloralose-anesthetized cat. Mean carotid pressure was recorded by means of a mercury manometer on a smoked kymograph drum. All drugs were administered intravenously *via* the femoral vein. Blood pressure responses to the test compound were recorded as well as the integrity of the peripheral and ganglionic autonomic nervous system. The latter was measured by several specific test agents. These were epinephrine, norepinephrine, DMPP (1,1-dimethyl-4-phenylpiperi-

(15) C. A. Winter, E. A. Ristey, and G. W. Nuss, *ibid.*, **141**, 369 (1963).

⁽¹²⁾ J. S. Buck, R. O. Haworth, and W. H. Perkin, Jr., J. Chem. Soc., 125, 2176 (1024).

^{(1957).} C. Randalt and J. J. Schito, Arch. Intern. Phormocodyn., **111**, 409 (1957).

⁽¹⁴⁾ F. E. D'Abnour and D. I. Smith, J. Pharmacol. Expl. Therap., 72, 74 (1944).

^a Hydrochloride. ^b See Table II, footnote c.

zinium iodide), FTM (furfuryltrimethylammonium iodide), and peripheral vagal stimulation. Antihistaminic activity was determined by blockade of the depressor response to injected histamine, and centrally acting compounds by blocking the pressor effect due to bilateral cartoid occlusion.

Discussion of Results

Table VII shows overt effects produced in mice. One can see that almost all of the compounds which produced effects in the mouse caused a CNS depressant action. This was usually accompanied by one or more of the following effects: decreased spontaneous motor

TABLE VII

SUMMARY OF DOSE RANGE TESTING IN MICE

	Oose,			Dose,	
N ¹	mg/kg			$\mathbf{pog}_{\mathcal{F}}\mathbf{kg}$	
No.	ри 1 - 1	Observations"	No.	P^{ij}	Observations
33	150	NOE Theorem 1 - 1914	120	300	SI CNS depression, bradypnea, low
21.20	300	Tachypnen, sl \downarrow SMA act.	1.11 1.11		posture, mydriasis, hypotonia
34-36 37	300 300	NOE SI↓ SMA	121-128	300	NOE
эс 3840	300	NOE	129	50	Low posture
41	300	SI to marked ↓ SMA		100	Hypothermia, sl CNS depression,
42	300 300	NOE	120		dyspica, mydriasis, convulsions
42	100	NOE	130	300	Low posture, bradypuca, mod \$
-1.)	200-300	SI 10 mod CNS depression, bradyp-	1 • 2 1	50	
	200-out	nea, increased pain threshold, low	131	- 00 100	SI to mod ↓ SMA, hypothermia Running seiznres, convulsions, opis-
		posture		100	thotonos, acute death
44	300	NOE	132	100	SI to mod † SMA, ataxia
45	100-150	Hypothermia	1.)_	200	Law posture, mod ↑ SMA, ataxia,
1.7	300	SI depression, bradypnea, low body		200	exophthalnia, mydriasis, hypo-
		posture, increased pain threshold			thermia, lacrimation, sl ptosis
46	300	$SI \downarrow SMA$	133	300	NOE
47	300	$SI \downarrow SMA$, low posture, bradypnca	134	75	Marked † SMA, high posture
48-52	300	NOE	1.9.2	150	Exophthalmia, straub tail, vocaliza-
53	150	NOE			tion, convulsions, mydriasis, ataxia
	300	Marked depression, low posture, hy-	135	100	Mod stimulation, hypersensitivity
		potonia, increased pain threshold		200	Dyspnea, popcorn convulsions, gasp-
54	300	NOE			ing, salivation, death
55	150	NOE	136, 137	300	NOE
	300	Mod \downarrow SMA, low posture, increased	138	200	Los posture, hypothermia, mod
		pain threshold			SMA
56-58	300	NOE		300	Salivation, running sciences, exoph-
59	300	$SI \downarrow SMA$			thalmas, hypothermia, mod
6061	300	NOE			SMA, mydriasis
62	300	Lacrimation	139	100	Low posture, hypersensitive to
03	300	NOE			touch, sl \downarrow SMA
64	300	SI to mod 🗼 SMA, dyspnea		200	Straub tail, ataxia, running scizures,
97-98	300	NOF			convulsions, emprosthotonus, ex-
-99	300	Tachypnea, dyspnea, mod ↓ SMA,			ophthalmos
		sl mydriasis	140	300	NOE
100-108	300	NOE	141	200	SI \downarrow SMA, hypothermia
109	300	Increased pain threshold, marked \downarrow		300	Low body posture, mod depression,
		SMA, sl ptosis, hypotonia, lacri-			tachypnea, seizures, hypothermia,
		mation, bradypnea, loss pinna re-			↓ SMA
1.14)	2000	flex	142	200	Low posture, \downarrow SMA, dyspice, hy-
110	300	NOE SNA Lin human mul ONS		124.363	pothermia
111	300	SI \downarrow SMA, bradypnea, mod CNS		300	$Mod \downarrow SMA$, exophthalmos, dysp-
112-116	200	depression, hypothermia, dyspnea Noti			nca, tremors, hypotonia, cyano-
112-110	$\frac{300}{150}$	NOF. NOE	149 144	300	sis, acure death NOE
11(300		143, 144 145	300	Hypothermia, low posture, \downarrow SMA
	000	Dyspnea, low posture, marked de- crease SMA, marked CNS depres-	146	300	Hypothermia, low posture, \downarrow SMA
		sion, lacrimation, bradypnea	147149	300	NOE
118	300	NOE	147-145	150	Low posture, \downarrow SMA
119	50, 100	SI \downarrow SMA, hypersensitivity, low	102	300	As above, dyspnea, convulsions
11.7	00, 100	posture, hyperthermia	153	300	Diarrhea, sl mydriasis
	300	Mod \downarrow SMA, mod CNS depression,	155	75	$SI \downarrow SMA$, low posture
	.,	bradypnea, hypersensitivity, hy-		150	Ataxia, dyspnea, loss pinna reflex
		perthermia, ataxia, dyspnea, my-		300	As above, hypersensitivity to touch,
		driasis			loss righting reflex
• SMA =	spontaneous	motor activity, $NOE = no$ overt side effe	c(s.		67 G

 $^{\circ}$ SMA = spontaneous motor activity, NOE = no overt side effects.

activity, low posture, hypotonia, respiratory depression, and tremors or convulsions. Of the 89 compounds tested and listed in Table VII only nine produced toxicity in the form of running seizures, tremors, convulsions, or death.

It is interesting to note that in spite of the apparent toxicity of these compounds (129, 131, 134, 135, 138, 139, 141, 142, 152), only one produced lethality at a dose level as low as 100 mg/kg. Compound 142

caused lethality at 300 mg/kg, while the rest caused only running seizures, tremors, or convulsions. Generally, most of the benzyltetrahydroisoquinolines were relatively nontoxic; however, they were not sufficiently potent as CNS depressants to be considered as tranquilizers, sedatives, or hypnoties, and further neurological investigation was not warranted. Two compounds (134 and 135) produced some degree of stimulation in the dose range; however, higher doses caused

TABLE VIII Summary of Analgetic and Antipyretic Tests (Randall and Selitto)

	(Pain	
	Dose,	threshold	
No.	mg/kg po	$elevation^c$	$Antipyresis^c$
33	100	+	_
34 - 37	100	_	-
38, 39	100	+	-
40, 41	100	_	_
42, 43	100	+	_
44 - 48	100	_	_
49	100	+	_
50	100	-	_
51	100	++	_
52	100	_	+
55	100	_ _ + _	++
57	100	-	-
58	100	+	-
59-62	100	-	-
63	100	+	-
64	100	++	-
97^a	25, 50, 100	- ,++,++	++, -, ++
98	100	+	_
99	50, 100	- ,++	-, -
100	100	-	+
102	100	++	_ _ + _
103	100	-	-
104	100	+	÷
105	100	_	_
106	100	++	+
108	100	-	+
110	100	+	-
112	100	-	++
115, 120	100	-	_
121	100	+	-
122	100	++	++
127	100	-	-
129	50	++	_
130	100	-	-
131	100	++	++
132, 133	25	-	-
134,* 135	100	-	-
136, 137	100	++	-
138	100	++	++
139	100	++	
140 - 142	100	-	_
143	100	++	-
144	100	_	+
145, 146	100	<u> </u>	-
151	100	+++	-
152	100	_	_
153	100	+	_
155	50	-	++ ,
Reducesn	lours And volu	ima b Rodinas a	and the second sec

^a Reduces pleural fluid volume. ^b Reduces carrageenin-induced edema at 25 mg/kg po and carrageenin abscess at 100 mg/kg po. $\epsilon + =$ significant, - = not significant.

toxicity. It can be speculated that the increase in spontaneous motor activity observed with these agents was a reflection of toxicity and not a selective stimulating action on the central nervous system.

Table VIII shows a summary of our tests in measuring elevation of pain threshold with the Randall and Selitto procedure. This test is sensitive to agents whose pain threshold properties are at least equivalent to aspirin, phenylbutazone, or acetanilide. It is to be noted that approximately one-third of the 70 compounds screened exhibited some degree of pain threshold elevating properties or analgesia. A number of these were also tested in the D'Amour and Smith tail flick test, which is selective for the more potent analgetic agents, such as codeine or morphine. Only one compound (97) had significant pain-elevating effects; nevertheless, it was considerably weaker than codeine in this test procedure. Approximately 20% of the compounds listed in Table VIII showed significant antipyretic activity. Both aspirin and phenylbutazone have such activity in raising pain threshold and lowering temperature of the inflamed foot in the rat and are also effective antiinflammatory agents in man. Compounds having this dual activity in rats are considered candidates for antiinflammatory testing. Compounds 97, 104, 106, 122, 131, and 138 produced significant activity in these two parameters; however, they were much less active than phenylbutazone. One compound (134) reduced both carrageenin-induced edema and carrageenin-induced abscesses. This agent was also considerably less active than phenylbutazone.

The results indicate that the series of compounds described in this study do not display sufficient biological activity in the aforementioned tests to warrant further testing at this time.

Experimental Section¹⁶

N-(3,4-Methylenedioxyphenethyl)-4-chlorophenylacetamide (**X**).—A mixture of *p*-chlorophenylacetic acid (102.0 g, 0.60 mole) and SOCl₂ (400 ml) was boiled at reflux for 3 hr. The solution was cooled and evaporated to dryness *in vacuo*; $C_{6}H_{6}$ (100 ml) was added and the concentration was repeated *in vacuo*. The resultant viscous oil was dissolved in $C_{6}H_{6}$ (200 ml) and the solution was added, with cooling and stirring, over a 10-min period to a mixture of 3,4-methylenedioxyphenethylamine (80 g, 0.48 mole), $C_{6}H_{6}$ (200 ml), and 10% NaOH (600 ml). Stirring was continued until crystallization occurred and the mixture was then allowed to remain at 25° for 1 hr. The solid was filtered with suction and washed (H₂O, hexane) to give a white, solid product (134 g, 88%). An analytical specimen, mp 139–141°, was obtained by recrystallization from EtOH–H₂O.

1-(4-Chlorobenzoyl)-6, 7-methylened ioxy-3, 4-dihydroisoqu inoline (XII).—A stirred solution of N-(3,4-methylenedioxy-phenethyl)-4-chlorophenylacetamide (132.0 g, 0.415 mole) in POCl₃ (350 ml) and PhMe (450 ml) was boiled at reflux for 3 hr. The hot solution was cooled to 25° and treated with petroleum ether $(2 l., bp 30-60^\circ)$; a precipitate developed which was separated from the supernatant liquid by decantation. This procedure was repeated with additional petroleum ether (three 1-l. portions) until the liquid phase was essentially colorless. Ice (800 g) was added to the solid and the mixture was made alkaline with NH_4OH and extracted ($CHCl_3$); the organic extract was washed (NaCl solution) and dried (Na₂SO₄). Removal of solvent in vacuo yielded a viscous oil which was used in subsequent operations without further purification. It was dissolved in MeOH (4 l.) and placed in an open, well-ventilated tray (28 \times 40 cm); periodic additions of MeOH were made in order to keep the solvent at its original level. After 3 weeks the mixture was filtered to yield a solid product (25 g). The filtrate was evaporated to dryness in vacuo, and the residual oil was dissolved in CHCl₃ which was washed (NH₄OH, NaCl solution) and dried (Na_2SO_4) . After concentration in vacuo the resultant viscous material was passed over a Florisil column (700 g) in CHCl₃ to give additional solid product (15 g, total yield 44%). An analytical sample, mp 132-133°, was obtained by recrystallization from MeOH.

⁽¹⁶⁾ Melting points were taken in open glass capillaries on a Thomas-Hoover Uni-Melt apparatus and are corrected. Microanalyses were carried out by Miss Margaret Carroll and her associates at Smith Kline and French Laboratories. Where analyses are represented by the symbols of the elements, analytical values obtained were within $\pm 0.4\%$ of the theoretical values.

benzoyl)-6,7-methylenedioxy-3,4-dihydroisoquinoline (12 g, 0.026 mole) and MeI (80 ml) was heated in a sealed vessel at 100° for 3 hr. The collected precipitate was recrystallized from McOII EttOAc to yield a yellow crystalline solid (13.3 g, 76%), mp 241-242° dec.

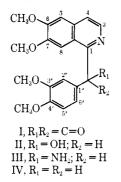
1-(4-Chlorobenzoyl)-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (XVI).--Raney nickel (2 g) was added to a solution of XV (10.0 g, 0.022 mole) in MeOH (1200 ml) and the mixture was hydrogenated at atmospheric pressure; nptake of H₂ essentially ceased after 1 hr with nptake of 1.3 molar equiv. The mixture was filtered and the filtrate was concentrated *in ractio*. The residue was treated with 6 N HCI to yield a yellow solid which was filtered off and partitioned between CHCl₃ and 6 N NH₄OH. The organic layer was separated and the aqueous layer was extracted several more times with CHCl₃. The combined organic layers were washed (saturated NaCl) and dried (Na₂SO₄). Removal of solvent *in vacuo* yielded an amorphous material which was crystallized from MeOH to give a white crystalline solid (3.1 g, $43\frac{7}{4}$), mp 115-117°.

1-(4-Chlorobenzoyl)-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (XIV).---NaBH4 (5.5 g 0.15 male) was added to a refluxing solution of XII (3.5 g, 0.011 male) in McOII (500 ml). Heating was continued (or an additional hour; H₂O (200 ml) was added, and the mixture was concentrated to ca, 150 ml *in ratio*. The aqueous solution was extracted with CHCla, washed (satarated NaCl), and dried (Na₂SO₄). Removal of solvent *in ratio* yielded a viscous ail which was crystallized as the corresponding hydrochloride (2.4 g, 65%). An analytical sample, up 225–227°, was obtained by recrystallization from methanol.

1-(4-Chloro- α -hydroxybenzyl)-2-methyl-6,7-methylenedioxy-1,2.3,4-tetrahydroisoquinoline (XVII),- A mixture of NV (3.0 g, 0.0066 mole), NaBH₄ (5.0 g, 0.14 mole), and MeOH (400 ml) was boiled at reflux for 90 min. H₂O was added and the mixture was concentrated *in cacao* to *ca*, 50 ml. The residue was extracted with CHCl₄ which was washed with saturated NaCl solution and dried (Na₂SO₃). Removal of solvent *in cacuo* yielded a colorless oil which crystallized (1.29 g, 50 ζ_{c}) on treatment with ethered HCl. An analytical specimen was obtained by recrystallization from MeOH-EtOAc.

Acknowledgment. -We wish to thank Miss Susan Danielson for assistance in preparation of this manuscript.

Synthesis and Pharmacology of Some α-Keto-, α-Hydroxy-, and α-Amino-1-benzylisoquinolines


JERRY A. WEISBACH, JOEL L. KIRKPATRICK, EDWARD MACKO, AND BRYCE DOUGLAS

Smith Kline and French Laboratocies, Philadelphia, Pennsylvania

Received February 21, 1968

A number of α -keto, α -hydroxy, and α -amino-1-benzylisoquindines related to papaveraldine and papaverinol have been prepared and examined pharmacologically. Testing covered dose-range studies in mice, examination for cardiovascular activity, and analgetic-antipyretic-antiedenta studies. The pharmacological profile of the group, derivable from these data, is discussed.

The α -derivatized 1-benzylisoquinoline derivatives exemplified by papaveraldine (I), papaverinol (II), and papaverinylamine (III) are of general medicinal, chemical, and pharmacological interest because of their direct relationship to the clinically efficacious spasmolytic papaverine (IV). To date, however, there

are only scattered reports of syntheses and biological testing in this area. Thus, 5'- and 6'-monomethyl-papaveraldines,^{1,2} as well as a number of variants in which one to four of the methoxyl groups have been replaced by methyl moieties, have been described.³ In addition, the papaveraldine analogs having the 6,7- or 3',4'-dimethoxy groups replaced by methylenedioxy,⁴

the corresponding tetrahydroxy compound,⁵ the 3',4',-5,6-tetramethoxy isomer,⁶ 6-bromopapaveraldine,⁷ des-(tetramethoxy)papaveraldine (= 1-benzoylisoquinoline),⁸ and several substituted 1-(4-pyridoyl)-6,7-dimethoxyisoquinolines⁹ have been described. In the papaverinol series, only the 6-bromo⁷ and the pyridoyl⁹ analogs were prepared, and there is one publication devoted to synthesis of several α -amino compounds.¹⁰

On the biological side one finds only a few scattered observations in these series. Thus, papaveraldine and papaverinol are apparently in some respects biologically similar to papaverine, *i.e.*, they show activity against barium chloride and acetylcholine-induced spasm,¹¹ have protective action against histamine-induced bronchospasm,¹² but have little or no analgetic activity after oral administration in rats.^{13,14} The corresponding 6'-bromo compounds as well as 6'-bromopapaverine are likewise antispasmodic at similar dosage levels.⁷ Some other studies report the absence of any effect of papaveraldine on electrically stimulated laryngeal

- 16) E. Späth, K. Riedt, and G. Kubiczek, Monatsh., 79, 72 (1948).
- (7) T. Vitali and G. Azzolini, Boll. Soc. Ital. Biol. Sper., 31, 1025 (1955).
 (8) J. F. O'Leary, D. E. Leary and I. H. Slater, Prov. Soc. Exptl. Biol.
- Med., 76, 738 (1951).
 (9) F. D. Popp and W. E. McEwen, J. Am. Chem. Soc., 80, 1181 (1958)
- (10) G. Tsatsas, Ann. Pharm. Franc., 10, 61 (1952).
- (11) F. Mercier, J. Mercier, and M. R. Sestier, Compt. Rend. Soc. Biol., 145, 408 (1951).

(13) F. Mercier, P. Marinacce, and L. Richaud, ibid., 146, 1757 (1952).

⁽¹⁾ A. Burger and R. D. Foggio, J. Am. Chem. Soc., 78, 4419 (1956).

⁽²⁾ C. Szantay and K. Steczsek, Acta Chim. Acad. Sci. Hung., 25, 79 (1960).

⁽³⁾ J. G. Beasley and A. Borger, J. Med. Chem., 7, 686 (1964).

⁽⁴⁾ J. S. Buck, R. D. Baworth, and W. H. Perkin, Jr., J. Chem. Soc., 2176 (1924).

⁽⁵⁾ M. Oberlin, Aceb. Phorm., 265, 256 (1927).

⁽¹²⁾ F. Mercier, M. R. Sestier, and L. Richand, ibid., 146, 1359 (1952).

⁽¹⁴⁾ A. Brossi, H. Besendorf, L. A. Pirk, and A. Rheiner, Jr., in "Anatgenies," G. deStevens, Ed., Academic Press Inc., New York, N. Y., 1965, p 281.